
14th International Symposium on Ultrasonic Doppler Methods for Fluid Mechanics and Fluid Engineering
Kobe, Japan (23.-25. October 2023)

Implementation of autocorrelation algorithm in VHDL for UVP
instrumentation

Isadora Fernanda Zappe Schmidt1, Fabio Rizental Coutinho1, Andre Luis
Stakowian2, Cesar Yutaka Ofuchi2, Marco Jose da Silva3, Flavio Neves Jr2, and
Rigoberto Eleazar Melgarejo Morales4
1 Dep. of Electronics Engineering, Federal Univ. of Technology - Paraná (UTFPR), R. Cristo Rei 19, Vila
Becker, Toledo, Parana, 85902-490, Brazil
2 Graduate School of Electrical Engineering and Computer Science (CPGEI), Federal University. of
Technology - Paraná (UTFPR), Av. 7 de Setembro 3165, Curitiba, 80230-901, Parana, Brazil
3 Institute of Measurement Technology, Johannes Kepler University Linz, Altenberger Str. 69, 4040, Linz,
Austria
4 Mechanical & Materials Engineering Postgraduate Program (PPGEM), Federal University of
Technology - Paraná (UTFPR), Av. 7 de Setembro 3165, 80230-901, Curitiba, Parana, Brazil

Ultrasound velocity profiler (UVP) instrument can be applied in a variety of applications from industrial (oil, food

processing, etc.), to environmental (hydrology, sewer, etc.) to energy (nuclear, hydropower plants, etc.). UVP

equipment measures flow velocity using an autocorrelation method or phase-shift method. This method is

established on the phase estimation for sequential ultrasonic pulses of a complex demodulated signal. The present

work aims to implement in VHSIC Hardware Description Language (VHDL) a velocity estimation algorithm based

on the autocorrelation method. First, the method was implemented in MATLAB® to be used as a reference. Then,

the algorithm was implemented in VHDL in a MAX10 Field Programmable Gate-Array (FPGA) using the DE10-

Lite Board from Terasic. The VHDL implementation process digitalized data using IEEE 754 standard floating-

point number representation with single precision. Validation was performed using previous data acquired from a

one-phase horizontal pipe flow. The algorithm implemented in VHDL presented a relative estimated velocity error

below 0.00003%, consuming 4,623 total logic elements and 28 embedded multiplier elements from MAX10 FPGA.

Keywords: Ultrasound, Doppler effect, Flow measurement, Field programmable gate array, Phase-shift

estimation

1. Introduction

Ultrasound Velocity Profiler (UVP) is a well-established

method for liquid velocity measurements. It consists of

measuring the Doppler effect observed in the echoes

returned by a pulsed ultrasound wave [1]. The next step in

the evolution of this technique is the use of multiple

transducers for two-dimension velocity measurements or

transducer arrays for velocity imaging applications. A

field-programmable gate array (FPGA) is an integrated

circuit capable of computing a high density of data with

low latency. It is also very efficient for performing parallel

processing of several channels. And it is also flexible

enough to be applied at lower or higher computational

demand applications. The phase shift or the use of an

autocorrelator for estimating the Doppler velocity is the

main computational demand of a UVP instrument. This

work aims to describe the implementation of an

autocorrelation method in VHSIC Hardware Description

Language (VHDL) for use in a MAX10 Field

Programmable Gate-Array (FPGA).

1.1 Background

The work of [2] presented an implementation of a pulsed

wave Doppler ultrasound in a Virtex-5 FPGA. They

estimated the velocity using a 128-point discrete Fourier

transform implemented in Verilog language. It was

reported that a total of 1,159 slice resources and 3,223 slice

registers were required from the FPGA for the proposed

technique.

Another similar study is from [3], which was based on the

Cyclone III FPGA family (Altera-Intel, San Jose, CA,

USA). They implemented a Doppler frequency estimator

that uses the peak and centroid of the power spectral

density to compute velocity. It requires 10,308 logic

elements for FFT computation running with a 105 MHz of

clock frequency.

2. Methodology

2.1 Autocorrelation method theory

The autocorrelation algorithm is based on computing the

phase for a set of ultrasound-pulsed emissions. The phase

shift, 𝜑, of the ultrasound echoes are directly related to the

velocity component in the transducer axis direction by [4]

𝑣1 =
𝑐𝜑

4𝜋𝑓𝑇
, (1)

where 𝑐 denotes the sound velocity in the considered

medium, 𝑓 is the transducer central frequency and 𝑇 is the

period between emissions. The phase, 𝜑, is estimated as

the argument of the autocorrelation function, as [5, 6]

𝜑 = 𝑡𝑎𝑛−1
𝐼𝑚[𝑅(𝑇)]

𝑅𝑒[𝑅(𝑇)]
. (2)

The input of the autocorrelation function is the IQ-

demodulated ultrasound signal or the signal complex

envelope [7]. Thus, the autocorrelator algorithm must

process complex numbers, 𝑟 = 𝑥(𝑛) + 𝑖𝑦(𝑛) , where 𝑛

denote the ultrasound emission number. The

autocorrelation function for a set 𝑁 − 1 ultrasound pairs of

emissions is obtained by

𝑅(𝑇) =
1

𝑁 − 1
∑ 𝑟∗(𝑛)𝑟(𝑛 + 1)

𝑁−2

𝑛=0

 , (3)

where 𝑟∗ denotes the complex conjugate of 𝑟.

2.2 Experimental set-up

VHDL algorithm was implemented in the DE-10 Lite

board from Terasic. This hardware provides a large

capacity MAX10 FPGA from Altera, which has up to

50.000 logic elements. It also features a 64MB SDRAM,

an Arduino UNO R3 expansion connector, analog-to-

digital converter, VGA output, etc. The system setup is

shown in Fig.1. Digital data are provided to DE-10 Lite kit

through a SPI interface. An Arduino UNO R3 board acts

as a bridge between a PC and the FPGA board. In the SPI

context, the Arduino is configured as the bus master and

the FPGA as the slave. The MATLAB ® Support Package

for Arduino ® Hardware was used to allow MATLAB to

interactively communicate with the Arduino board.

Previously acquired data from a real flow is loaded on

Matlab environment which sends it to the DE-10 Lite

board through an Arduino kit. The FPGA stores the data

received in the SDRAM and then evaluates the

autocorrelation function. In Matlab, the same computation

performed in the FPGA is also done. The results obtained

from FPGA are returned to the PC through SPI. Both

results, from Matlab and FPGA, are compared to assess

computation accuracy.

Figure 1: System set-up.

VHDL code is developed using Quartus Prime Lite Edition

(version 18.1, from Intel). The code compiled is

implemented at MAX10 FPGA through a USB

connection. Since Eq. (1) comprises a multiply and

accumulate computation, it was chosen to use a floating-

point data representation to accommodate a large range of

real values. At the FPGA, digital data was represented

using 32 bits using IEEE 754 standard for single precision.

The VHDL implementation of floating-point multiply and

accumulate was based on [8]. In Matlab, it was chosen to

use a 64 bits (or double precision) data representation since

it will be used as a reference.

2.3 Autocorrelation implementation

The autocorrelation function was implemented in VHDL

language as depicted in Fig. 2. Data is received from

Arduino by the SPI controller. Arduino UNO was set up

as an SPI master with a clock polarity and phase at high

level. The interface was configured to transfer 16 bits of

data at each transfer with a 20 MHz clock. Data from SPI

controller is buffered and sent to be stored in SDRAM

through the Write SDRAM module (Fig. 2). When a total

of 𝑁 ultrasound emissions are stored, the autocorrelator

begins to read the first ultrasound emission sample then

applies Eq. 3. This calculation is repeated for the next

emission until it reaches the 𝑁 − 1 emission. The result

from the autocorrelator is sent from SPI to Matlab(PC) for

comparison purposes.

Figure 2: VHDL software block diagram.

Initialization, read and write low-level operations at

SDRAM are performed by the SDRAM controller. This

module used an open-source code from [9]. The SPI

controller was responsible for the SPI communication. It

also concatenates each pair of 16 bits of data to form 32

bits single precision word. The Write SDRAM module is

responsible for buffering and issuing a write command for

the SDRAM. The data for the autocorrelator is delivered

by the Read SDRAM module which control the requests

of readings and buffering.

The autocorrelator block consist of a state machine that

control the order of execution and two VHDL components:

a floating-point multiplication (fp_mul) and a floating-

point summation (fp_add) component (Fig. 3). These

components are instantiating 4 times in VHDL to

implement the Eq. 3 as depicted in Fig. 3. The simplified

autocorrelator state machine (Fig. 4) comprises of 5 states.

In the first state, the autocorrelator is waiting for a start

signal which is issued by SDRAM controller after all the

data are correctly stored. At state 1, the next sample, 𝑟(𝑛 +
1), is read at SDRAM. At the first execution 𝑟∗(𝑛), Rp and

Ip are loaded with zero values. At state 2, the process

depicted in Fig. 3 is executed. At state 3 it is checked if the

𝑁 − 1 ultrasound pairs of emissions were reached. If not,

the content of R_SUM and I_SUM are shifted to Rp and

Ip, respectively, and the content of 𝑟(𝑛 + 1) is shifted to

𝑟(𝑛) . Reaching the end of emissions, the results of

R_SUM and I_SUM are sent to the SPI controller.

Figure 3: Multiply and accumulate component diagram.

Figure 4: Autocorrelator state diagram.

2.4 Flow apparatus

Input data, used for evaluating the FPGA autocorrelator,

were obtained through a pipe flow experiment as shown in

Fig. 5. In the experiment, the centrifugal pump – driven

through an inverter of variable frequency – circulates the

liquid in an acrylic tube whose inner diameter is of 25.9

mm (D). A trace powder with a 1.07 g/cm3 density was

added to the reservoir at a concentration of 4 g/L. Water

flow is measured by a Coriolis-type flow meter. A 4 MHz

ultrasound transducer (Met-flow S.A, TX4-5-8) was

positioned at 329D from the pipe entrance. It was coupled

with a box filled with water and it was angled by 18º to the

pipe normal (Fig. 5b).

Data acquisition was performed with a PXI System from

National Instruments, model NI5752R. This system can

acquire data at 50 Msamples/s and store data for offline

processing. A pulse repetition frequency of 6,005.99 Hz

was set-up. A mean flow velocity of 1.0 m/s was adjusted

in the flow for the data collection.

Velocity processing is done offline using Matlab

environment. Each velocity was measured using 128

emissions Data acquired from each emission was IQ

demodulated [7]. After demodulation, the digitized data

was filtered by a matched filter centered in 4 MHz and 4-

cycles pulse. Finally, it was converted to a double

precision (64 bits) at Matlab environment to be used as a

reference. For FPGA processing data precision were

reduce to 32 bits (single precision).

(a)

(b)

Figure 5: (a) Flow apparatus. (b) Ultrasound system positioning

To assess the accuracy of the proposed method, three range

gates or depths {0.027D, 0.054D, 0.5D}, with D=25.9

mm, were chosen as shown in Fig. 6. The FPGA processor

only calculates the autocorrelation value, thus velocity

estimated by the FPGA is evaluated at Matlab using the

autocorrelation values computed by the FPGA, using Eq.

(1) and Eq. (2).

3. Results

The results shown in Tables 1 and 2 were the

autocorrelation evaluation and velocity obtained with the

data from the FPGA processor. The relative error between

the estimates from FPGA and Matlab was very small,

below 0,00003%. Thus, indicating that the proposed

method is feasible to be used in terms of accuracy. This

small relative error shown in Table 1 is because the

autocorrelation performed by MATLAB® considers

double precision number representation (64 bits) whereas

the FPGA algorithm uses single precision representation

(32 bits). Velocity data estimated also show a very good

agreement, (Table 2).

Figure 6: Range gates depths analyzed.

In terms of FPGA resources, a total of 4,623 logic elements

were used (Table 3). Considering only the autocorrelation

implementation, 4,123 logic elements and 352 registers

were required (Table 3). Since MAX10 FPGA has 49,760

logical elements, the implementation used approximately

9.3% of the total logic elements of the integrated circuit.

Considering the embedded multiplier elements, MAX10

has 288 9-bit multiplier elements. Thus, approximately

10% of the embedded multiplier (Table 3) was used in the

proposed method. Compared with the results from [3], this

implementation can estimate velocity with less than half of

the FPGA resources. To compute the autocorrelation

function, the FPGA spent 15 clock cycles for each

emission. This is equivalent to spending 0.3 µs for each

emission (for a 50 MHz clock). Considering the

experimental setup condition used (128 emissions), the

computation of the autocorrelation function will spend

38.4 µs.

Table 1: Accuracy results of the VHDL autocorrelator.

Depth

(mm)

Relative Error -

real part (%)

Relative Error -

imaginary part (%)

0.7 +1.633×10-5 -1.265×10-5

1.4 -2.419×10-5 -1.498×10-6

12.95 +2.514×10-5 5.746×10-6

Table 2: Accuracy results from velocity.

Depth

(mm)

Velocity -

Matlab (m/s)

Velocity -

FPGA (m/s)

Relative error

(%)

0.7 0.52074182 0.52074176 -1.152×10-5

1.4 0.78348715 0.78348714 -1.276×10-6

12.95 1.08836469 1.08836460 -8.269×10-6

Table 3: FPGA resources used.

Entity Total

Logic

Elements

Total

Registers

Embedded

Multiplier 9-

bit elements

Autocorrelator 4,123 352 28

SDRAM 417 267 0

SPI controller 83 97 0

Total 4,623 716 28

4. Summary

In this work, an autocorrelation method for the

measurement of fluid flow velocity was implemented in

VHDL for FPGA processing. The data processed was

represented using a floating point (IEEE 754 standard)

with single precision (32 bits). The proposed technique

presented a very small relative error regarding

autocorrelation or velocities estimation. Due to this, as

future work, we recommend assessing the accuracy of a

half-precision floating-point data representation (16 bits).

Using fewer bits for data representation will imply using

less FPGA resources and optimized hardware.

The implementation proposed used approximately 9.3%

resources of the MAX10 FPGA. This result shows that this

hardware may be capable of processing up to 10 ultrasound

transducers simultaneously.

4. Acknowledgments

This work was carried out with the support of the

following Brazilian agencies: Fundação Araucária de

Apoio ao Desenvolvimento Científico e Tecnológico do

Paraná (grant 026/2020) and CNPq – Conselho Nacional

de Desenvolvimento Científico e Tecnológico (grant

406881/2021-9 – Chamada CNPq/MCTI/FNDCT

Nº18/2021, Faixa A - Grupos Emergentes). The authors

are grateful for their support.

References

[1] Takeda Y: Ultrasonic Doppler fluid flow, Springer, (2012).

[2] Page A and Mohsenin T: An efficient & reconfigurable FPGA

and ASIC implementation of a spectral Doppler ultrasound

imaging system, IEEE 24th Int. Conf. on Application-

Specific Sys., Arch. and Processors, 42(4), (2013), 198-202.

[3] Ricci S and Meacci V: FPGA-Based Doppler Frequency

Estimator for Real-Time Velocimetry, Electronics, 9(456),

(2020).

[4] Ofuchi C Y et al.: Extended Autocorrelation Velocity

Estimator Applied to Fluid Engineering, ISUD 9, (2014),109-

112.

[5] Kasai C, et al.: Real-time two-dimensional blood flow

imaging using an autocorrelation technique, IEEE Trans. on

Sonics and Ultras., SU-32(3), (1985),458-464.

[6] Loupas T, et al.: An axial velocity estimator for ultrasound

blood flow imaging, based on a full evaluation of the Doppler

equation using a two-dimensional autocorrelation approach,

IEEE Trans. on Ultr., Fer., and Freq. Ctrl, 42(4), (1995), 672-

688.

[7] Haykin S: Communications Systems, John Wiley & Sons Inc,

New York (2001).

[8] Deschamps J P, et al. Guide do FPGA implementation of

arithmetic functions, Springer, Dordrecht, 2012.

[9] Placha, A Sdram controller, open-source code, 2019.

https://github.com/Arkowski24/sdram-controller.

